
38 The Philippine Statistician, 2000
Vol. 49,Nos.1-4, pp. 38~.

Modeling repeated binary data
with nonignorable missingness

Cherry T. Nepomuceno'

ABSTRACT

This paper presents a model for repeated binary response variables with nonignorable missing data
mechanism. Marginal expectations of responses are related to a set of time-independent and time
dependent covariates by a logit link function and a logit model was used for the missing data
mechanism. When ignorability was assumed, the model simply followed a joint distribution of .
responses that satisfies conditional independence. Considering normal priors, a procedure of
implementing Metropolis-Hastings algorithm on a simple case is illustrated.

KEYWORDS: repeated measures, binary data, logistic regression, nonignorable missing data
mechanism, Metropolis-Hastings algorithm

1. INTRODUCTION

The analysis of longitudinal data or repeated measures data is commonly confronted
with problems on missing observations. Knowledge, or absence of knowledge, of the
mechanisms that led to certain values being missing is a key element in choosing an
appropriate analysis and in interpreting the results. In repeated measures design,
incomplete data often arise as a result of drop-out in which sequences of
measurements on some units terminate prematurely. Kenward and Diggle (1994)
cited, in their study, classification of dropout process by Little and Rubin (1987) as
completely random dropout (CRD) wherein the dropout and measurement processes
are independent; random dropout (RD), the dropout process depends on the observed
measurements, i.e., those preceding dropout; and informative dropout (lD), the
dropout process depends on the unobserved measurements, i.e., those that would have
been observed if the unit had not dropped out.

The dropout process can affect the inferences about the measurement process. It can
be ignored in the RD case provided that the required inferences concern the
measurement process for notionally complete sequences, and those inferences are
likelihood based (Diggle and Kenward, 1994). Completely random dropout can be
dealt with by using standard methods of
analyses. In fact, analyses restricted to subjects with complete data yield valid
estimates but there may be substantial loss of efficiency in discarding all the
information on individuals with incomplete data (Fitzmaurice et aI., 1996b). Dropout
that is informative is said to be nonignorable since the dropout mechanism cannot be
ignored when estimating parameters for the data. With nonignorable mechanism,
inferences for the data parameters generally depend on the posited missingness
mechanism that implies increased sensitivity of inferences to reasonable model
specifications. In Diggle and Kenward (1994), Rubin pointed out in his discussion of
the paper that without distributional assumptions or supplemental information it is
impossible to 'test' or find evidence for or against nonignorability (informative
dropout).

There are some ways ofhandling missing values. The first approach is simply to drop
cases with missing values on any variables and to undertake complete case analyses.
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This mayleadto bias if values are missing in a systematic way and generally does not
make fully efficient use of all the data. The second approach is to fill in the missing
values with imputed values. This may reduce the bias of the complete case analyses
but may lead to additional bias in multivariate analyses if the imputation method fails
to control for all multivariate relationships. The third approach is to use model based
adjustment methods that will generally be consistent and fully efficient provided that
the assumed model holds (Skinner and Coker, 1996). these procedures assume
ignorable missing data mechanism, which means that the likelihood can be factored
into a part that contains the parameters of interest and a part that contains parameters
modeling the missing data mechanism. Missing at random (MAR) and missing
completely at random (MCAR) are ignorability conditions which guarantee that some
inferences maybe made without recourse to complicated missing-data modeling.

When missing data mechanism is nonignorable, it is not possible to factor from the
likelihood a part with only parameters for the missing data mechanism (Little and
Rubin, 1987). Nonignorability may be classified as: models where the missing data
mechanism, R given Y = (Yobs, Ymis) depends on Ymis but does not contain unknown
parameter \jJ associated with R; and models where the missing data mechanism is
nonignorable and unknown with' lack of knowledge reflected on the unknown
parameter \jJ. The term ignorable indicate that it is not necessary to specify a model
for dropout in a likelihood-based analysis of the measurement process i.e. tile causes
of dropout can be ignored sincemaximum likelihood estimates of the parameters for
the process under investigation are the samewhether or not they are jointly estimated
with the parameters for the dropout process (Fitzmaurice, et al.,1996).

Some of the studies that involved nonignorable missing data models considered
continuous longitudinal response data assumed to be multivariatenormal with logistic
model for the dropout mechanism and used ML to estimate parameters (Diggle and
Kenward, 1994); while for a similar case, Troxel, et al. (1998) formed
pseudolikelihood for its estimation procedure, For binary longitudinal data subject to
informative dropout Fitzmaurice, et al., (1996a) and Fitzmaurice et al. (1995) used
likelihood-based analysis; while Zeger, et a1. (1985) used working likelihoods to
approximate the actual likelihood that lead to consistent estimates under weak
assumptions, Pulkstenis, et a1. (1998) addressed the problem of accounting for
informative dropout in the form of rescue medication when comparing pain relievers
with respect to longitudinal binary pain relief outcomes. Follmann and Wu (1995)
assumed separate models for the primary response and (he rnissingness and are linked
by common random parameters. Resultant approximation is a mixed generalized
linearmodel with possibly heterogeneous random effects. Likewise, Liangand Zeger
(1986) extended GLM to the analysis of longitudinal data by introducing a class of
estimating equations that giveconsistent estimates of the regression Parameters and of
their variance undermild assumptions about the timedependence.

This study is motivated by a problem of determining disease state of an individual
based on some diagnostic procedure with the presence of covariates. Some illnesses
are diagnosed after results from a series of tests and information on some symptoms
are available. For example, diabetes can be properly diagnosed after a series of sugar
test results are available such as fasting blood sugar, post prandial sugar, and glucose
tolerance tests. Dengue can be diagnosed after a series of serologic tests.
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Consider a study on tuberculosis (TB) prevalence. It is a two-stage study that used
chest X-rayon the first stage and sputum tests on the second stage. The chest X-ray
initially identified individuals from randomly chosen clusters who are IB positive and
those who are not. TB positive individuals identified by such procedure were
included in the second stage and were subjected to a series of sputum tests. Being
positive in one of the sputum tests finally classified an individual as T8 positive.
Since we are dealing with repeated measures, the problem of missing observations
often arises. Covariates such as sex, age, employment status, family size, coughing
frequency, presence of profuse sweating at night, presence of T8 patient within the
household, and other physical and enviromnental characteristics are considered.

Suppose that N individuals are included in the first stage and there are n individuals
identified by chest X-ray to be T8 positive (i.e. (N-n) individuals are T8 negative
hence are not included in the second stage). Out of n individuals eligible for sputwn
testing, only m., m, ::; mt-I 5 n, submitted themselves for the tth sputum test, t = I, 2,
... , T; m, = n. It is assumed that the covariates are completely observed.

Let Xio be the disease state at the first stage (chest X-ray result), i=1,... ,N; Xn be the
disease state of the ith individual at the tth sputum test, i = 1, ... , m, ; t = 1, ... , T; i.e.

X= { I
It 0

if individual i is positive at the tth sputum test

otherwise.

and Zi(t) be a ql vector of covariate associated with the tth sputum test on the ith
individual, i = 1, "', n; t = 1,... ,1.

For some individuals, some XI'S are missing. Data can be arranged so that it follows a
monotone pattern. The following cases for covariates to be considered are: (a) all
covariares. are time-independent; and (b) combination of time-independent and time-
dependent covariates. .

The objective of this paper is to present a model for repeated binary response
variables with nonignorable missing data mechanism. For estimation procedures,
Metropolis-Hastings algorithm is used. This paper is organized as follows: Section 2
presents a model for repeated binary data with nonignorable missingness relating its
expectations to time-dependent and time-independent covariates using logit link
function; Section 3 presents the Metropolis-Hastings algorithm to estimate parameters
for a simple case of univariate response; and the summary and discussions are
presented in Section 4.

2. REPEATED BINARY DATA WIlli NONIGNORABLE MIfSSING DATA.

Suppose N individuals were observed in the first stage. Using a certain evaluation
procedure to determine disease state ofeach individual, let

{
I if ith individual is positive of the disease of interest

XiO = 0
otherwise for i = 1, ... , N.

.'

•
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Individuals diagnosed as positive in the first stage will be included in the second
stage, say, there are n of them. They will be subjected to another series of tests to
determinetheir final disease state.

Suppose also that the second stage of observations involves T repeated measurements
on each identified subject. At this point, it is convenient to introduce some notations
that will be used throughout this paper. For i = 1, ... , n, let

X,'> (Xii, Xi2, ... , XiT) be a T vector of binary random variables on the ith subject
possibly incompletely observed;

T

Zi' = (Zi(l)', Zi(2)', ... , Zi(T)') be a q vector of covariates,q = Lq, where Zlt)' is
/.1

q. vector of covariatesassociatedwith subject i, obtained at the tth occasion;
13i' = (J3i(I)', ~i(2)', , ~i(T)) be qvector ofcovariate effects ontheresponse;
R,' = (RI, Ri2, , RiT) be a vector of T missing data indicator i.e., Ril is 1 if XiI is
observed and Rit is 0 if XiI is missing, t = 1, ... , T;
Yi' =(Yi(1)' ,Yi(2)', ... , Yi(T)',) be a q vector of covariate effects on the missing data
mechanism;
a be a vector of T unknown parameters relating response variables to the missing
data mechanism;
o be a vector of rC2 parameters relating the missing data mechanism with its past
valueswhere rC2 indicatesa combination ofT taken 2 at a time;
A be a vector of ·rC2 parameters relating the missing data mechanism with the past
responsevalues; .
p be a 2T-T-1 unknown vector of bivariate and higher order relations of the response

'variables;
Y =(Yi) be the final disease state of the individual on the second stage i.e.,

if at leastone XiI =1, t =1,...,T;

O.w.

Assume that observations on distinct individuals are independent, i.e. given Z =( ZI.
ZJ...... 'Ln.)' , (Xi. Ri. ~i) and (Xj. Rj, ~.i) are independent for i :jtj. Consider monotone
missingdata patterns, i.e. P[Ril = 11 Rs = 0, 'I:j s < t] = O.

We can determinethe prevalencerate
T

E(Yi) =P (Yj = 1) = P [U{Xu =I} ].
1=1

Consideringthe covariates, we are particularly interested in the expression

•
T

E(YI X, Z, R) = P (Y = 11 X, Z, R) = P [U{(XI .=1)IZ,R}]
1=\

(1)

Now for t = 1, and for i=I, ... .n, let Xu - Ber (J.ll) so that E(Xj 1 ) = P( Xii = 1) = J.l1
and Var(Xil ) = J.ll (1 • J.l1). From the probability mass function of Xii, i=l ,... ,n,

(2)

•

then assuminga logistic link
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(3)

•

(P[Xil = XiI IZ:. (1),13(1)] = exp { Xilf3(l)' z, (1) -In (1 + exp (13(1)' z, (1m} (4)

which implies that XdZ(l) ~ Ber{ e.p[P{ll'Z(ll))}.
1+ exp IJ(I)'Z(l)

Let Ril - Ber (l\Il), i = 1, ...,n Assuming logistic regression,'

(5)

where Wi (1) = (XiI, Z:. (1)')' , (l+ql) X 1 vector of the first response and the
covariates at the first occasion; and 4>(1) = (a] ,y(I)')' , (1+ql) x 1 vector of
unknown parameters associated with the variables (XiI, Z. (1)').

Let Wi = (Wi(l)', Wi(2)',... , Wi(T)') = (Xi, z.) be a 1 x (T+q) vector of responses
T

and covariates, whereq = L q, .
1::1

Clearly,

so that

•

. P[R]=riIIXiI ,14(1), aI, Y(1)] =exp {rilal XiI +rily(1)'~(1)-
In [1 +exp[(al Xii +y(l)'~(l)]]}

Now,

p[0. {x, ~ liz,R, p,a,y,0,l.,pl] =t. pIx, =liz,R, p, a,y1
- Ip[X1 =l,Xs =lIZ,R,IJ,a,y,pJ

I>s

+ IP[x, = I,X s = I"X, =liz, R,p,a,y,o,~pJ- ...
t>.t>r

+(-ly-I p[x) = I,X2 =1,...,XT =liz, R, p,a,y,o,l,p]
Note that

P(X IZ, R 13, o, y] =P[X, RIZ, 13, c, y] / Lx P[X, RIZ,13, a, y]

One wayof formulating nonignorable missing data models is to write the joint
distribution of X and R in the form suggested by Little and Rubin (1987)

P[X, RIZ,13,a,y] = P[X IZ,13] P[R IX, Z, a, y)

(6)

(7)

(8)

(9)

•

•
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From (4)and (6)

P[X=x,R=rlZ,p,a,y]=P[X=xlZ,P] P[R=rIX=x, Z, a,y]
=exp {xP'Z-In(1 +exp(p'Z»+rax+ry'Z-In(l +exp(ax +y'Z»} (10)

From(8)and (10),

P[X=x lZ,R=r, P,a, 't] =

exp {x (or + B'Z) + In(I + exm'Z»-1n (I + exp(ax +y'Zm
I +exp {(ar+ P'Z)+ 1n (1 + exp(y'Z»-ln (l + exp(a+y'Z»} (11 )

• Note met

Ip[X= x] Z,R=r,~,a,y]= 1 (12)
(x=O.I)

E[XIR = r,Z,~,a,y] = P[X = l/R = r,Z,~,a,y]

exp tar + p'Z + 1n(1 + exp(Y'Z))-lo(1 + exp(a + y' Z))}
= 1+ exp (ar + p' Z + 10(1 + exp(y'Z))-lo(1 + exp(a + y' Z))}

(13)

21 2 I 2 IE[X R =r,Z,~,a,y]=1 P[X=lR=r,Z,~,a,y]+O P[X=OR=r,Z,~,a,y]
(14)

= E[XIR = r,Z,~,a,y]

Hence

Var[X!R = r,Z,~,a, y] = E[XIR = r,Z,~,a, y]~ - E[X!R = r,Z,~,a, y]}

_ exp tar + P' Z + 10(1 + exp(y'Z))-In(l + exp(a + y' Z))}

- [I + exp far + ~'Z+ 10(1 +exp(y'Z))-lo(1 +exp(a +y'Z))}]2
(15)

(16)

•

When a = 0, i.e. themissing data mechanism does notdepend ontheresponse variable (MCAR
condition) then P[X= x IZ, R = r, P,a = 0, y]= exp[xP' Z]I {I :+- exp [P' Z]}=P[X= x IZ, Pl .
Consequently, X - Ber(exp [P' Z]I (1+exp [P' Z])

Toextend the above procedure indetennining thebivariatejointconditional distrIbution of(XI,
X2) given [Z(l), Z(2), pel), P(2), R =(rl, r2), 0.1, 0.2, y(l),y(2), P12, 012, AI2], we have

P[X" X2!Zl =(Z(I), Z(2»,R(2)= (RJ, R2), P2:=(P(1), P(2»,a(2)=(al,a2), yz=(y(l), Y(2»,P12,012,
A12]
_ P[XI, X2, Rl, R21 Z2 = (Z(l), Z(2», ~2,a(2),y2, P12,012,A12]

- L P[XI,Xr, Ri, R21 Z2= (Z(1),Z(2», ~2,a(2),y2, P12,012,A12]
(Xl'X2)
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..
P[XI, X2,RI,.R21 Z2 =(Z(I), Z(2», P2,a.(2), 'Y2,p12,<:>12,A12]

=P[XI, X21la,P2, Pli] P[RI, ~I X),X2, la, 0.(2), "(2, b12, Al2]

P[X(, X2!Z2 =(Z(I), Z(2», 132 =(P(1),P(2», P12]
=P[X2IX" 1'.(2), P(2»,P12] P[XI! 7.(1), (P(l)]

Assuming logistic regression

P[X2 =x21X, =XI, 7.(2), P(2»,Pl2]
=exp {x2[P(2)' Z(2)+Xl P12]-In[l +exp(p(2)' .1'.(2)+xI Pl2]}

From(18),

P[XI =X), X2=X21la = (Z(I), .1'.(2», P2 = (P(I),P(2», PI2]
= exp{x2[P(2)'.1'.(2)+XIPI2] -In [1+exP(P(2)'Z(2)+xIPI2]}exp{x)[P(1)'Z(1)}

In[l+exp(P(I)' Z(1»] }
=exp[x,P(I)'.1'.(l)+ x2P(2)'Z(2)+X,X2PI2 -In [1 +exp(p(l)'.1'.(l»] - ,

In [1+ exp(p(2)'.1'.(2) + XI P12)]}

(17)

(18)

(19)

(20)

•

ASSlUne that nonresponse is independent of the future values but is dependent on the present
and pastvalues. Hence, we model the probability distnbution as

P[RI= ri,~ = f21 X, = X],~ = X2, 'L2, 0.(2), "(2, b12, A12]
=exp {r,[xla,+"(1)' .1'.(1)] +r2[x2U2 +"(2)' Z(2)+rl b12 + XIAI2]

1n[1 exp(X)!X1 +"(1)' Z(1»] -
In[I +exp [X2U2 +"(2)' .1'.(2)+r] 012 +x\Au]]} (21)

From (20)and (21), (17) becomes
P[XI = XI, X2= X2, ~= fl, ~= f21 'k, P2, 0.(2), "(2, PI2, 012, A12]

=exp{XI [P(l)'.1'.(I)+rlal+r2 AI2 ]+x2[P(2)'.1'.(2)+r2a2]+
XlX2PI2 + fl"((I)'.1'.(I) +f2"(2)' Z(2) +
flf2bl2 -In [1 + exp(P(1)'.1'.(1»] -ln [I+ exp(p(2)'.1'.(2)+ XI PI2)]
In[I +exp(aIXI +"(1)'1.(1»] -In[I +exp(a2x2+"((2)'Z(2)+
fl 012 + XI Au)]}

Taking the sum of(22)over all possible values of(X], Xz) then (16) becomes

(22)

•

'.
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(I+exp(p(2)'1..(2)+x,P12)][1 +exp(a,x. +1(1)'1..(1»)][1 +exp(a2.l1 +1(2)'1..(2)+ r,ol2 +X1A.12)]

. K
2

(23)

•

•

•

where

K2= [1 + exP@(2)'Z(2)r 1[I+exP(Y(1)'Z(1))]-I{[1 + eXP(Y(2)~z(..• 2) + 'i~z] + } +
. exp{J3(2)'Z(2) + rzuz}

[I + exp(u2 + 1(2)' 1..(2) + r.()lz]

{ I }exp{f3(ltZ(l) + 'ia. + rzA.1z} [I + exp(A.I2 + y(2)'Z(2) + r,()lZ] +

[I + exp(f3(2)'Z(2)+PI2][I + exp(a l + y(I)'Z(I»] exp{J3(2)'Z(2) + r2u2 + P12}

[I + exp(uz + 1.12 + y(2)' Z(2) + 1j()12]

Now, evaluate

E[XI,X2IZ(11z(21p(I1p(2),RI = r.,R2= r2,al,a2,y(11y(2),pl2>°12,Alz] =

E[X\,X2IIr2),Z2,02].

It canbe shown that

E[X\,XzIR(2) ,Z2'OZ] = ~:<XI,X2»[X1 = XI,XZ= xzlR(Z),ZZ'OZ]= (J.lI2, J.l22)
(XI.X.)

~~ .

J.1\Z = LP(x\ =t,X2IR(2),Z2,n2]
X,-{o,l}

K2-
1 exp{p(l)'Z(l)+r\Q\ +r2A1Z }

and

}J22 = ')'plx.,xz =tIR(2),ZZ,02J
XI~'\}

=KZ-
I exp{p(21 Z(2)+aZrZ}

{[I +exp(jI(2tz(2»11 +""pMt~I»11 +exp(a, +"«2tZ(2)+>;0")]+

[exp(p(t,z(l)+ 'ial + r2~Z + PI2)] }
-s-:[t-+-ex-p(po-(.,......,2',.-Z-:"(2-:-)-+-p\-.,.,z)l1 + exp(y(t'z(I)+a.lIt +exp(az+y(21z(2)+ 'i0lz + ~z)]
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E[X\,X2IR(Z),Z2,P2]'[X\,X2IR(Z)'ZZ,n2]

= L [X\2 X\~2] P[X1 = ~,X2 = X2IR(2),Zz,!l:z]
(X••X1) X1X2 X2

=[~:: ~:}
where

\1111 =J112

\11\2 =\112\ =plxl =1,X 2 =1IR(2),Zz,!12J

exp{p(I)'Z(I)+p(1)'Z(1)+PI2 +rl«1 +r2«2 +r2A.12}= =-.::.....:.......;...--'--'--~'---..:.......;...--'-'=---'--''--.::......::._::..-:.:e.:..- _

K2[1 +exp(p(l)' Z(1)+ P12)][1 + exp(<<1 + "«1)'Z(I»][1 + exp(<<2 + y(l)'Z(l) + r1al 2 + A.12)]

Hence

When X, andX2 arenotrelated i.e. PJ.2 =0 and themissing data mechanism isignorable i.e., (ll

=<X2 =Au =au =0then (23) becomes

P[XI =xl>X2 =x2\Z(llz(21p(llp(21RI = TI,R2 = T2' « I' «2' y(11 y(21pl2,a12 ,A12 ] =

= exp{ x IP(I)' Z(1) } exp{ x 2P(1)' Z(1) }
[1 + exp{ P(I)' Z(1) }][ 1+ exp{ P(l)' Z(1) }]

.; P[XI =XII Z(1),~ (1)] P[X2=X2I'Z(2), ~(2)] (24)

When the missing data mechanism is ignorable i.e. (XI= <X2 = AI2 = a l 2 =0, equation
(23) becomes

P[X\ =XI' X2 =X2IZ(1),Z(2), 13(1),13(2), RI =f l, R2 =f2' «1'«2' y(I),y(2),PI2,OI2'A.12]=
= exp{xIP(I)'Z(I)+ x2P(1)'Z(2)+ XIX 2PI2}

[I+ exp{p(I)'Z(I)}][l + exp{p(2)'Z(2) + X\PI2}]

= P[XI =XII Z(l),~ (1)] p[X2~X21 XI=X1.1.(1), P(2)] (25)

Using the same scheme, the jointdistribution of~ =(X1,~ X:3) given lJ , ~3, <x(J), 13 , p(3),

a(3) , ')..(3) and R(3) can be obtained The above procedure may likewise be extended to obtain

•

•
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ZT =(Z(1), ,Z(T),
fir= (J3(1), , 13(1), .
a(T) = (a1, , aT),
YT= (y(1), , y(1),
p(T) = 6>12, P13, , P12...T),
f1(T) = (f112. ~3, , Or-1.T),
A(T) = (~2, Af" , AT-1 T),(T) - ... .
R - (R1, ... , RT)],

~,let

Bt =J3(t)'Z(t);
1tt = <XtXt +y(t)'Z(t),

B(t) =(BI, , Bt) ,

x(t) =(XI, , Xt) for t =I, ... , T.

..

..

P[X (I) R (I) Iz A p(I) (1(1) 'V 3(i) l.<')] =
J ,'1'", "" ,
p[X(I) IZ A p(I)]P[R(I) IX(I) Z (1(1) 'V 3(1) 1(1)]

,'1",' , It "" ,

I

exp{~>JOJ + U(I)'p(I)}

}=1

where Pij...1= 0, V i ~j ~ ... ~ 1, 1= 2, ... , t,

p(R(I) =r(I) IX(I) =x(l).Z,.a(I).'Y,.3(').1(I)] =

(26)

(27)

(28)
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•

P[X(I) IZ R(I) IS (I) (I) 1:.(1) ,\(f)]=, P[X(I),R(f) IZ ,R ,p(I),a(I),y ,O(I),A,(I)]
t' ,.. "p ,0 ,1,,0 ,~ t 1', ,

),PIX(t) ,R(f) IZ"P"p(I),a(I),Y,:O(') ,A(I)]
, ~I.

PIX (I ) R(I) Iz P p(l) 0(1) ¥ 6(1»).(1)] =
, " I' , , It' ,

ex{~{xi1J +r;r)+ Ult)',(I) +~.t~ljr..8_ +x,r",A,.,)]

E[X(I)IZ R(I) IS p(I) act) 'II 0(1) 1.(1)] =
t ", , , I" ,

E[X(I)IZ"R('),n,] = (,u1"P2" ...,JI,,}

(29)

(30)

(31)

(32)

(33)

Let X-P) be a t-I vector of responses without thejth response; andX.iP) be a t-2
vector of responses without the ith andjth responses, ij=I,... .t. Then

Iljt = } plx j = I,X)t)/R(l) ,ZpOt J for j =I,...t
(;;t.»)

where the summation is overall possible values ofthe vector X-J(t).

Cov[X(I)IZ"R(I) ,0,] =[~ll .,. ~It]
. u/I a;

where

(34)

(35)

crij =E[X i,Xj IZpR(t>,Ot]-llitlljt,

and

i,j =1,...,t (36)

..
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E[Xj,XjIZI'R(I),nl]= ~ P[xj =1,Xj =:1,X_ij(I)IZ I'R(I),n .J (37)
(x_ij Il)

again, the summation is over all possiblevaluesof the vector X_If (t).

Assuming p(l) =0 and ignorability, i.e. a(l) = 0, 11 = 0,0(1) = 0, 1..(1)= 0 then

p[X( I ) Iz R(I) A p(I)::: 0 art) ::: 0 y 6(1)::: 0 A.(I) ::: 0]:::
I' ,1'1' , , t s ,

(38)

since8j =13(j)'Z(j), j = 1, ... , t.

Assuming CRn,

P[X(t) IZ R(I) P p(t) a(l) = 01 0(1) = 0 A(t) = 0] =
I' 't" , t' ,

In P[Xj =xjIX1, ...,Xj_pZ"R(I) ,P"p(t)]
j=l

(39)

•

Now for fixed T, substitute the derived marginal and joint distnbutions of the repeated
responses given the covariates and the missing data mechanism to equation (7) to obtain the
prevalence rate oftile disease ofinterest orE(Yrx, z,R).

3. MARKOV CHAIN MONTE CARLO SAMPLING

To estimate the parameters in the model presented in the previous section. Markov
chain Monte Carlo(MCMC) methods are proposed. For the general procedures of
implementing MCMC methods, refer to Gilks et aI., (1996). In the simple case of a
univariate response,.the procedureis illustrated below.

Here t = 1, so we may write XI = X, RI =R, Z(l) =Z, 13(1) == 13, al =c, 1(1) =1, ql =
q.

From (4), Xlz,p-Ber{~}.
l+exPIP'ZJ

Now, assuming that pi b, ~ - Nq(b, ~), b- Nq(O, I), ~- Inv Wishart (v, SO') where v
and S are knownand S is symmetric, positive definite, the posterior distribution is

(40)

•

Thus, wehave,



(41)
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exp[xp' ~] (21t)-<J/21I:1-1/2 exp~ t(p- b)' I:-I(p - b)K21ttq/2exp{-rtb/}
1+exp[p Z] j=1+vq " n,I,-»"Jj [V +~ - j]rlSI'"lEt" ..)"e-1'!S>:' I

. expt t(P -: b)'I:-I(P - b)+ xp' Z}
a: [1 +exp(p' Z)] .'

•

Sincethe observations are independent,

exp{-HP-b)'I:-I(P-b)+~ XiP'Zi}
p[PIX,Z,b,I:]oc n .

n [1 +exp(p'Z;)]
;=1

The expression in (42) may thus be written as g(B).

(42)

Consider the case where q = 3, i.e. p=(Po .{31•P2)'. Since the probability function
g(B) in (42) is not of closed form, find an envelope function h(lIS») h(j3) ~ g(j3) 'r;f j3 E

~nq, and sampling from h(B) is possible. Consider h(.) to be Normal(., .), i.e.

where ~ is symmetric and positive definite, hence ~-1 exists and is also symmetric.

Now by assumption

h(p)=(21tt3/21~ 1-1/2exp{-t[(P-b)~-I(P-b)]+ tp·Z;xi}

h(p)~ (2nt" ,Ilr';' exp{-t[(p -(b+ t,X,Z,L))L-'(p -(b+ t,X,Z,L))]}

oex+t,x,z, +t[t,x,z, ]L[t,X,Z,]}
Define

•

•

•
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where p._j == vectorof Pexcluding thejth component.

Applying Metropolis-Hastings algorithm assuming that onlyn, responses were
observed out of n, nl .:s; n, the following iterations are performed:

a) Given Xmis = (Xnl+l, ... , xn) , generate p.= (PI·, P2·, ..., pq. ) as follows:

Use PMLE based on P[XIZ, P] with observed responses only,as the initial value

p(O)= (Po(O), PI(O), ~2(O» i.e.

[

L }] eXP{P'I x.Z}
P[XIZ, Pl =n eXP~iP',Z; = n ;=)' I =

,=1 l+exp{p z.} rl[l+exp{p'ZJl
;=1

ex+'t. x,Z, - t.1n[l+exp{z,'PlI}
. ap[x/z, p] .

Thenequatmg' to 0, we obtam
ap

~ xZ'=~ z.( exp 'P JL I I L I ....

;=\ ;=1 1+exp ; 'P

51

•

..

Use Newton-Raphson iterative procedure to approximate j =IJ}(O) =~o(0), ~I (0), ~2 (0))

al] Nowsample PO(l) from

Sample U from U(O, 1).

Consider the conditional distribution
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•

It can be shown that

Let the acceptance/rejection criterion be denoted by

It can be shown that •
(43)

Thisimplies that the sampling acceptance/rejection criterion does not depend on the
response variable.

Th r:t (I) 'f U< . '[LnD [I+exp 0(0) + f31 (O)ZjJ + f32 (O)Z; ]] th . r:t (I)en, accept ps 1 - mm 0) (0) ,0 erwtse..,o
;cl 1+exp 0 +~1 Zil + ~2 Zi2 .

= f3o(O).

81] Next, sample f31(1) from

Again, it canbeshown that

••
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Sample U from U(O, 1).

Hence accept P1 (1) if

a3] Next, sample ~P) from

As in the previous cases, it canbe shown that

Sample U from U(O, 1).

53

If

•
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..
(I) +p(I)Z +P (O)Z ]o I II 2 12·

(I) (I)
o + PI Z'I + P2 Z;2

Again, similarto (43)

g(P2 IPO(I),p/I)~(P}O) IPo(l),PI(J)) = Ii:[_I+_e-:.XP...s,.-::--~---=-=-~.:....=..---=r
fJjJ2 (0)lp}I),~(I)~(P2 IPo(J),PI(IlJ ;=1 l-s exp

Hence accept P2(1) if

n [ (I) A (I)Z A (0) ]
U <n 1+ exp 0 + 1-'1 ;1 + 1-'2 Zi2 < I

- (I) (I) -
;=1 l+exp 0 +PI Zil +P2 Zi2

•
Continuingin this fashion, we arrive at a Markov Chain Monte Carlo sampleof IIJ

whoseestimatedposterior mean we denote as p(m,) =(Po(m,), Pl (m,), P2 (m,)).

using Gibbs sampling from

Assuming~i'i =nl + I,n l +2,...,n} are independent and identicallydistributed,we
sample Xi from

-':'~~....,.-"",:,,~--,--,,:,~~-~ for i =n, +1,n1 +2, ...,n.

•
Starting with the new values ofx'1)mis = (Xnl+l, ... , xn)' ,iterate (a) and (b) until P'" and

J;[*mis converge, say to PMH and Xmis,MH' respectively.

Now from (6)

[ I ] exp{rm + ry'Z}
PR=rX=x,Z,a,Y =- { }

I-s exp ra:x+ry'Z

Let

(a,Y'}lc,Er -Nq+l(c, Ey)

c- Nq+1(O, I)
Ey - Inv Wishart (w, W) '.

where wand Ware known and W is sym, positivedefinite:

Similar Metropolis-Hastings procedure as above is applied to obtain estimates of
(a, y'). Iterative procedures are continuously applied to the models derived in the
previoussection.

•
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4. SUMMARY AND DISCUSSIONS

55

•

This paper presents a scheme for modeling repeated binary responses with a nonignorable
missing data mechanism. TIle models used a simple relationshjp between dropout, responses
and their past values inte~ting covariate infonnation. In the univariate case, the conditional
distribution of the response given the covariates and missingness showed a perturbed Bernoulli
distribution; and its conditional expectation and variance follow the form of the Bernoulli
distribution. For the bivariate case, the form of the conditional distribution of the responses
given covariates, missing data mechanism andtheir past values has yet to be compared with the
standard probability distnbutions. When ignorability was assumed though, the joint bivariate
model can be expressed as the product of the marginals given previous response. TIle sante
result extended tothecase oft repeated binary measures.

In the case of case of univariate response, a sequence of Metropolis-Hastings algorithm and
Gibbs sampler is illustrated to estimate the parameters of themodels. These MCMC methods
are sequentially combined to obtain estimates of the parameters and the missing data. It is
observed from the models that the number of parameters increases considerably as the number
ofrepeated observations increases.
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