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Modeling repeated binary data
with nonignorable missingness
Cherry T. Nepomuceno'

ABSTRACT

This paper presents a model for repeated binary response variables with nonignorable missing data
mechanism, Marginal expectations of responses are related to a set of time-independent and time-

dependent covariates by a logit link function and a logit model was used for the missing data

mechanism. When ignorability was assumed, the model simply followed a joint distribution of
responses that satisfies conditional independence. Considering normal priors, a procedure of
implementing Metropolis-Hastings algorithm on a simple case is illustrated.

KEYWORDS: repeated measures, binary data, logistic regression, nonignorable missing data
mechanism, Metropolis-Hastings algorithm .

1. INTRODUCTION

The analysis of longitudinal data or repeated measures data is commonly confronted
with problems on missing observations. Knowledge, or absence of knowledge, of the
mechanisms that led to certain values being missing is a key element in choosing an
appropriate analysis and in interpreting the results. In repeated measures design,
incomplete data often arise as a result of drop-out in which sequences of
measurements on some units tefminate prematurely. Kenward and Diggle (1994)
cited, in their study, classification of dropout process by Little and Rubin (1987) as
completely random dropout (CRD) wherein the dropout and measurement processes
are independent; random dropout (RD), the dropout process depends on the observed
measurements, i.e., those preceding dropout; and informative dropout (ID), the
dropout process depends on the unobserved measurements, i.¢., those that would have
been observed if the unit had not dropped out.

The dropout process can affect the inferences about the measurement process. It can
be ignored in the RD case provided that the required inferences concem the
measurement process for notionally complete sequences, and those inferences are
likelihood based (Diggle and Kenward, 1994). Completely random dropout can be
- dealt with by using standard methods of

analyses. In fact, analyses restricted to subjects with complete data yield valid
estimates but there may be substantial loss of efficiency in discarding all the
information on individuals with incomplete data (Fitzmaurice et al., 1996b). Dropout
that is informative is said to be nonignorable since the dropout mechanism cannot be
ignored when estimating parameters for the data. With nonignorable mechanism,
inferences for the data parameters generally depend on the posited missingness
mechanisim that implies increased sensitivity of inferences to reasonable model
specifications. In Diggle and Kenward (1994), Rubin pointed out in his discussion of
the paper that without distributional assumptions or supplemental information it is
impossible to 'test’ or find evidence for or against nonignorability (informative
dropout).

There are some ways of handling missing values. The first approach is simply to drop
cases with missing values on any variables and to undertake complete case analyses.
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This may lead to bias if values are missing in a systematic way and generally does not
make fully efficient use of all the data. The second approach is to fill in the missing
values with imputed values. This may reduce the bias of the complete case analyses
but may lead to additional bias in multivariate analyses if the imputation method fails
to control for all multivanate relationships. The third approach is to use model based
adjustment methods that will generally be consistent and fully efficient provided that
the assumed model holds (Skinner and Coker, 1996). These procedures assume
ignorable missing data mechanism, which means that the likelihood can be factored
into a part that contains the parameters of interest and a part that contains parameters
modeling the missing data mechanism. Missing at random (MAR) and missing
completely at random (MCAR) are ignorability conditions which guarantee that some
inferences may be made without recourse to complicated missing-data modeling.

When missing data mechanism is nonignorable, it is not possible to factor from the
likelihood a part with only parameters for the missing data mechanism (Little and
Rubin, 1987). Nonignorability may be classified as: models where the missing data
mechanism, R given Y = (Yobs, Ymis) depends on Yo,s but does not contain unknown
parameter  associated with R; and models where the missing data mechanism is
nonignorable and unknown with’ lack of knowledge reflected on the unknown
parameter . The term ignorable indicate that it is not necessary to specify a model
for dropout in a likelihood-based analysis of the measurement process i.e. the causes
of dropout can be ignored since maximum likelihood estimates of the parameters for
the process under investigation are the same whether or not they are jointly estimated
with the parameters for the dropout process (Fitzmaurice, et al.,1996).

Some of the studies that involved nonignorable missing data models considered
continuous longitudinal response data assumed to be multivariate normal with logistic
model for the dropout mechanism and used ML to estimate parameters (Diggle and
Kenward, 1994); while for a similar case, Troxel, et al. (1998) formed
pseudolikelihood for its estimation procedure. For binary longitudinal data subject to
informative dropout Fitzmaurice, et al., (1996a) and Fitzmaurice et al. (1995) used
likelihood-based analysis; while Zeger, et al. (1985) used working likelihoods to
approximate the actual likelihood that lead to consistent estimates under weak
assumptions. Pulkstenis, et al. (1998) addressed the problem of accounting for
informative dropout in the form of rescue medication when comparing pain relievers
with respect to longitudinal binary pain relief outcomes. Follmann and Wu (1995)
assumed separate models for the primary response and the missingness and are linked
by common random parameters. Resultant approximation is a mixed generalized
linear model with possibly heterogeneous random effects. Likewise, Liang and Zeger
(1986) extended GLM to the analysis of longitudinal data by introducing a class of
estimating equations that give consistent estimates of the regression parameters and of
their vanance under mild assumptions about the time dependence.

This study is motivated by a problem of determining disease state of an individual
based on some diagnostic procedure with the presence of covariates. Some illnesses
are diagnosed after results from a series of tests and information on some symptoms
are available. For example, diabetes can be properly diagnosed after a series of sugar
test results are available such as fasting blood sugar, post prandial sugar, and glucose
tolerance tests. Dengue can be diagnosed after a series of serologic tests,
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Consider a study on tuberculosis (TB) prevalence. It is a two-stage study that used
chest X-ray on the first stage and sputum tests on the second stage. The chest X-ray
initially identified individuals from randomly chosen clusters who are TB positive and
those who are not. TB positive individuals identified by such procedure were
included in the second stage and were subjected to a series of sputum tests. Being
positive in one of the sputum tests finally classified an individual as TB positive.
Since we are dealing with repeated measures, the problem of missing observations
often arises. Covariates such as sex, age, employment status, family size, coughing
frequency, presence of profuse sweating at night, presence of TB patient within the
household, and other physical and environmental characteristics are considered.

Suppose that N individuals are included in the first stage and there are n individuals
identified by chest X-ray to be TB positive (i.e. (N-n) individuals are TB negative
hence are not included in the second stage). Out of n individuals eligible for sputum
testing, only m,, m, £ m.; < n, submitted themselves for the tth sputum test, t = 1, 2,
..., T; me=n. Itis assumed that the covariates are completely observed.

Let Xj, be the disease state at the first stage (chest X-ray result), i=1,...,N; X be the
disease state of the ith individual at the tth sputum test,i=1, ..., m;t=1, ..., T;ie.

- 1 if individual 1 is positive at the tth sputum test
"o otherwise. :

and Zi(t) be a q, vector of covariate associated with the tth sputum test on the ith
individual, 1=1, ... n;t=1,..., T

For some individuals, some X|'s are missing. Data can be arranged so that it follows a
monotone pattern. The following cases for covariates to be considered are: (a) all
covariates. are time-independent; and (b) combination of time-independent and time-
dependent covariates. '

The objective of this paper is to present a model for repeated binary response
variables with nonignorable missing data mechanism. For estimation procedures,
Metropolis-Hastings algorithm is used. This paper is organized as follows: Section 2
presents a model for repeated binary data with nonignorable missingness relating its
expectations to time-dependent and time-independent covariates using logit link
function; Section 3 presents the Metropolis-Hastings algorithm to estimate parameters
for a simple case of univariate response; and the summary and discussions are
presented in Section 4. : _

2. REPEATED BINARY DATA WITH NONIGNORABLE MISSING DATA

Suppose N individuals were observed in the first stage. Using a certain evaluation
procedure to determine disease state of each individual, let

. = 1 if ith individual is positive of the disease of interest
0 0 otherwise fori =1,...,N.
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Individuals diagnosed as positive in the first stage will be included in the second
stage, say, there are n of them. They will be subjected to another series of tests to
determine their final disease state.

Suppose also that the second stage of observations involves T repeated measurements
on each identified subject. At this point, it is convenient to introduce some notations
that will be used throughout this paper. Fori=1, ..., n, let

Xi’= (Xi1, Xip, ..., Xit) be a T vector of binary random variables on the ith subject
possibly incompletely observed,;

Z; =(Z(1),Zi(2),...,Z(T)y)bea q vector of covariates, q = Zq, where Zi(t)’ is

q: vector of covariates associated with subject i, obtained at the t" occasion;

Bi =Bi(1), Bi2), --., B(T)) be q vector of covariate effects on the response;

R’ = (Ri;, Riz, ..., Rit) be a vector of T missing data indicator i.e., R is 1 if Xj is

observed and Ry is 0 if Xj; is missing, t =1, ..., T;

v =(yvi(1),yi(2), ..., v{T)’,) be a q vector of covanate effects on the missing data

mechamsm;

a be a vector of T unknown parameters relating response variables to the missing

data mechanism; '

& be a vector of 1C, parameters relating the missing data mechanism with its past

values where tC, indicates a combination of T taken 2 at a time;

A be a vector of C; parameters relating the missing data mechanism with the past

response values; '

p be a 2T-T-1 unknown vector of bivariate and higher order relations of the response
variables; :

Y =(Y;) be the final disease state of the individual on the second stage i.e.,

Y= 1 if at leastone X, =1t=1..T;
' 0 ow. '

Assume that observations on distinct individuals are independent, i.e. given Z =( Z,.
L. Z,),(X;R;Bi) and (X; R; B;)are independent for i #j. Consider monotone
missing data patterns, i.e. P[R;; = 1| R =0,V s <t] =0.

We can determine the prevalence rate
T
E(Y)=P(Yi =1)=P[JtX, =1} ).

=t

Considering the covariates, we are particularly interested in the expression

EY|X,Z,R)=P(Y =1|X,Z,R)=P [LTJ{(X, =1D)|Z,R}] (1)

t=1

Now for t =1, and for i=1,... n, let Xj; ~ Ber (i;) so that E(X;, )=P(X;;=1) = p,
and Var(Xi; )= p;(1 - ). From the probability mass function of Xj, i=1,...,n,

pxi) = p, " (L= p, )™ (2)

then assuming a logistic link
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O =In[m/(1-w)] =payzZi(l) ' 3)

we then have

(P[Xi =xi [ Z; (1), B(1) ] =exp { xaB(1) Zi (1) -In (1 +exp (B(1)" Zi (1)))}  (4)

o | explBy o]
which implies that X;|Z(1) Ber{1 " exp[B(l)' Z(l)]} .

Let Rj; ~ Ber (y)),i=1, ...,n Assuming logistic regression,’

T =In [y /(- w)l = 6(1) Wi(l) (3)

where W; (1) = Xy, Z; (1)), (1+q;) x 1 vector of the first response and the
covariates at the first occasion; and ¢(1) = (o , y(1)’) , (1+q;) x 1 vector of
unknown parameters associated with the variables (X, , Z; (1)’).

Let W; = (Wi(1)’, Wi(2),..., Wi(T))=(Xi, Z;) be a1 x (T+q) vector of responses

and covariates, whereq = Y g, .
1=1

Clearly,

P[Ri =i Wi (1), ¢ (1)] = exp {ru ¢(1)’Wi(1)-In[l 1-“exp (6(1)'Wi ()]}

so that

- PRy=10aXir , Zi(1), ou, ¥ (1)] = exp {raou Xp +ra W(1)Z(1) -
In [1 +expl(oy Xii +y(1Y Z(]]} (6)

Now,

T T |
P‘:U i =1z, R, B,a,y,ﬁ,)‘,p}} =Y Plx, =1Z,R,p,0,7]
=1 t=]
-S Plx, =1,X, =1Z,R,B,07, 0, ] o
+ S PX, =1,X, =1, X, =1Z,R,B,a,7,8,Mp]-...

1>8>r

+(=1"Plx, =1x, =1 X, =1Z,R,B.a,7.5,Mp)
Note that '

PIX|Z.R,B.c, 1] =P[X.R|Z B,c,7]/ Ty PIX.RIZ B.ct7] ®)

One way of formulating nonignorable missing data models is to write the joint
distribution of X and R in the form suggested by Little and Rubin (1987)

P[X.R|ZB,0,7] =P[X|Z B] PRIX.Z a,7] ©)
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From (4) and (6)

P[X=xR=r|ZB,0,7]=P[X=x|ZB] PR=1|{X=x, Z OL..Y]
o =exp {XxP'Z-In(1 +exp(B’Z) +rax+ryZ~In(l +exp(ax +y'Z))} (10)

From (8) and (10),
PIX=x|ZR=r,B, . 1]=
exp {x (or+B'Z)+In (1 +exp(y’Z))-In (1 + explox +y'Z
1 +exp {(ar+P°Z)+ (1 +exp(y’Z)-In (1 + expla+y°Z))} an
Note that
D P[X=x|ZR=rB,ay]=1 _ (12)

(x=0.1)

E[XR =1,Z,p,a,y] =P[X = R =1,Z,B,0,7]
_expfar+B'Z +In(l + exp(y'Z)) - In(1 + explo + v' Z))} (13)
" 1+exp{or+P'Z +In(l +exp(y' Z)) - In(1 + exp(a + y' Z))}

E[X’[R =r,Z,B,0,7]=1"P[X =R =1,Z,B,0,7]+ 0’ P[X = O|R =1,Z,B,0,7]

(14)
=E[XR =1,Z,B,0,7]

Hence
Var[XR =r,Z,B,a,7] = E[X|R =T, Z,B,a,y]{l -E[XR = r,'Z,ﬁ,a,y]}

- explar+B'Z+ In(1+ exp(y' Z)) - In(1 + exp(ac + v' Z)}} (15)
[1+exp {ar +B'Z + In(1 +exp(y'Z))— In(t + exp(c + 'y'Z))}]2

When a =0, i.e. the missing data mechanism does not depend on the response vanable (MCAR
condition) then P[X =x|Z, R =r, B,a=0,y] =exp [xB* ZJ/ {1 +exp [’ Z]}=P[X=x|Z B] .
Consequently, X ~Ber (exp [B’ ZJ/ {1 +exp [B’ Z]}

To extend the above procedure in determining the bivaniate joint conditional distribution of (X,
Xo) given [Z(1), Z(2), B(1), B(2), R=(1i, 12), 0u, &2, Y(1), ¥(2), P12, O12, A12], we have

PX1, XolZo <(Z(1), Z(2)), R®= Ry, Ry), B2(B(1) B2)), 0@ = (04,00), Y= ¥(1), Y(2)), 012802,
A}
P[X1, X2,Ri, Ra2| Z2= (Z(1), Z(2)), B2, @', y2, p12, 612, A12)

~STPIXi, X2, Ri, Re| Za = (Z(1), Z(2)), B2, @, y2, pra, b1z, A
X1.Xy)

(16)
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P[X1, X2, Ry, Ra| Z2 = (Z(1), Z(2)), B2, 0,2, piz, 612, A2] |
=P[Xi, XoZz, B2, pra] PR, Rol X, X2, Zo, 02,12, 812, A a7
PIX, Y22 =(Z(1) Z(2)), B = (BMBQ)). o) |
= P[leX}, Z(2), BQ2)), pi2} PG Z(1), (B(D)] (18)

Assuming logistic regression

P[Xa =xlX1 = x1, Z(2), B(2)), p12]
=exp {x2[B(2) Z(2) +x; pr2 ] - In[1 +exp(B(2) Z(2) + x, p1a}} (19

From (18),

PLX,=x, Xo=xlZy =(Z(1), Z{2)), B> = (B1)BQ2)). p12]
=exp{xlB2yZQ2)y+xip1] - In [1+exp(B(2) Z 2y +xipia] exp{xi[B(1) Z(1)}-
Inf1+exp(B(1)’ Z(1))] }
=exp{xiBAYZ(1) +xP2YZ2)+ xix:p12 —In[1 +exp(PAYZ(1)] - |
In [1+exp(B(2) Z(2) + x) pr2)]} . (20)

Assume that nonresponse 1s independent of the future values but is dependent on the present
and past values. Hence, we model the probability distribution as

P[Ri=1), Ry =1 X1 =x1, Xz =2, Zg, 02, 73,812, M)
=exp {nxou +y(1) Z()] +1fx00 +Y2) Z2)+11 O +x1A1] -
Inf1 exp(xioq +y(1) Z(1))] -
In[1 +exp [x200 +Y(2) Z2)+11 612 +x3An]] } - 1)

From (20) and (21), (17) becomes
PIXi =X, X2 =%, R=11, R=12| 25, B2, 0, 72, p12.812, Mo
=exp{xi [BAYZ(1) +ri0 + 12 Aia H X[ B(2YZA2) + r0}+
XX Pz +1Y(1YZ() + 1 ¥(2) Z42) +
nindi - In 1 +exp(B(1)Z(1))] - In {1+ exp(B(2)’Z(2)*+ x: pr2)} -
In[1 +exploux; +y(1YZ(1))] —n[1 +exp (02 X, +Y(2) Z(2) +
ndun +x1 AR} 22)

Taking the sum of (22) over all possible values of (X;, X;) then (16) becomes
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P(X, =x,X, = lel(l),Z(Z),ﬂ(l),B(Z),Rl =1n,R, = rz,a;,uzaY(l)aY(z)aplz»alz’)‘12]=

exp{x,B(1)'Z(1)+ x,p(2) Z(2) + x,X,p,, + X, 1,0, + /0L X, + XA, )
[1+exp((2)'Z(2) + x,p,, )][1 + expfa,x, +¥(1)' Z{1)]{1 + exp(a, x, +Y(2)fZ(2)+ b, +x,0,))
K,

(23)

where
1.
~1][1+exp(v(2)' Z(2) + 1y,
exp{B(2) Z2) + r,a,}
{1+ exp(a, + v(2)'Z(2) + 1;d),]
1
exp{B(1)'Z(1) + ra, + r;A,} (1 + exp(h; +7(2)'Z(2) + 1] ¥
{1+ exp(B(2)' Z(2)+ po][1 + exp(oy + Y(1)'Z(1))] | exp{B(2)'Z(2) + ry0, + )5}
[1 + exp(a, + Ay + ¥(2)' Z(2) + b, ]

]+

K2 1+ exp(B2yze2n 11t + exp(v(1) Z1)]

Now, evaluate

E[X.,lez(llz(2lﬂ(ll ﬁ(z)’Rl =1,R, = r,,a,,az,y(l),y(Z),p,z,S,,,k,,] =
E[X,, X,|R?,Z,,Q,].

It can be shown that

E[prle(z),Zzagzl= Z(xpxz))[xl = xl,X2 =X, R(z),zz,Q2]=(ul2, 1122)

(xl 'x2 )
where

Hiz = ZP[)(I =1sX2|R(2)’Zz9Qz]
Xy={0,1}

Kz—l exp{B(1)'Z(1) +ra, + 1,1, }
_| [1+exp(B2) Z2)+p,, )1 + expla, +7(1)' (1))

1 + exp{B(2)' 2(2) + r‘.;az +Pp}
[L+exp(d, +v(2)' Z2) +1,8,,] [1+exp(a, +A,, +7(2)'Z(2)+1,5,,]

and

Hn = %PanXz = llRm’Zz’Qzl
X = ,l}

=K, exp{B(Z)‘ Z(2)+azr2}

1 | N
{[1 +exp(p2) Z@)]1 + explr(1y Z()]1 + explar, + (2 2(2)+ 16, )]

[exp(p(l)’Z(l)+ hoy +hiy + Py, )] }
[l + exp(ﬁ(Z)’ Z(Z) + P2 )Il + exp('Y(l)' Z(l)+ ) )Il + exp(a2 + 7(2)’ Z(Z) + ’1612 +4, )]
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Also

E[X,, X, |R®,Z,,Q, 11X, X,|R®, Z,,Q,]

2 .
X X, X
=y [ ' 1.;} PIX, = x,X, =x,[R®,Z,.Q ]
(X,.X7)

XXy X
___l:V’n '/’12]
VY Va
where
Vi =Hp
Vp=HMn

Y=Yy = Plxl =1X,= llR(z),Zz,Qzl
exp{B(1)'Z(1) + B(2)' Z(2) + p,, + 1,0, + 1,, + A}, }

" K, [+ exp(B) Z2) + py, I+ expla, + y(1) ZA)][ + expler, +Y(2)'ZR) +1,8,, +4,)]

Hence

1- -
COV[X1»X2|R(2)oZzyQ2] = [:uu( ) l»lu) Vi ulzun}
Wi —Hily  Bp(l-py)

When X, and X; are not related i.e. pj, =0 and the missing data mechanism is ignorable i.e., o
=0 = A =0 =0then(23) becomes

P[X, =x,,X, =X2IZ(1),Z(2),ﬂ(l),ﬂ(2),R, =1n.R, =rzaalsaz:Y(l)"Y(z),Pmsmxnl=

- exp{ x,B(1)' Z(1) } exp{ x,f(2)" Z(2) }
[1+ exp{ B(1)' Z(1) }][1 + exp{ B(2)’ Z(2) }]

=P[X, = | Z(O)B (1)] PRo=x,1Z(2), B2)] | 24)

When the missing data mechanism is ignorable i.e. a;= a, = A2 = 812 = 0, equation
(23) becomes

P[X, =x,,X; =%, |Z(1),Z(2),8(1),B(2), R, =1, R, =1,,0),0,,7(1),7(2),p}5,83, 5] =

_ exp{x,B(1) Z(1)+ x,B(2) Z(2) + X,X,p,,}
[1+exp{B(1)'Z(1)}][1 + exp{B(2)' Z(2) + X ,p,, }]

=P[Xi = | Z()B ()] PR=x:| Xi=0,242), B@)] (25)

Using the same scheme, the joint distribution of X = (X;, Xo, Xs) given Zs , B3, o, 13, p®,
5, A® and R® can be obtained. The above procedure may likewise be extended to obtain

-
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the joint distribution of the T dimensional repeated response measures XU=(Xy,...,X7) given
Zr Br, ™ yr, p™, 8™, AM RM where

Zr=@(1), ... Z(T)),

BT= @(1)» seey B(T»- )
(X.m = (a1, veny a'r),

Y= (7(1)v ceey 'Y(T»,

p = (P12, P13, -, Pr2.7),
80 = (312, 813, ..., 5717),
A" = (Mg, A ..., ATaT),
RM=(R,...,Ry)],

Also, let

8= Bty Z(D),
™ = ouxe + Y(t)'Z(t),

0V=,,...,0),
¥ =(m,,...,m) fort=1,..., T.

P[x(f) R® lz‘ B, p(l) a® ¥ §® ;“(t)]=
R ) ’ y ’ v 8¢ ’
P[x(t) lzl , p' , p(!) ]P[R(') Ix(l) , z‘ ,a(l),y' ,8(') , 1(')] (26)

PIX® |Z,.8,.p”1=

t
exp{d_x,6, + Up}
j=l
e . j=1 -2 j-1 (27)
H[l + ex;{el. + Zx,py + 2 Zx,x,,pw +..+ x,...xj,‘p,,__‘jJJ
J=1 i=1 l=]l mal+l

where p; 1=0,Vizj2...2L1=2,. . t
P[R(l) = r(t) Ix(r) = x(t)’z‘ a(t) Y, 5(‘),1(')] =

ex irjx, + ;V-_:l i(};rnﬁh + x,r,,,ﬂ,,,,):l

J=1 I=) m=l+1

f][l +exp 7, + ﬁr,&,j + ilx,l,jD | (28)

J=t 1=1 1=1
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P[x(r) ]Z,,R('),B,,p"’,a(",y,,ﬁ('),L"’]=- pix(f),R(l) IZ”B”p(t) “(’),'Yn (l),)‘(!)]

PIX® R® IZ,,B,,p(') a®,y,,5°,09] (29)

X))

PIx(!),R(') IZ”B"‘)(‘) (1 ) ,7,,8(‘) l(‘)] —
«p[Z(x 0 + rlﬂl + g p(') + Z Z(rr 5 +xr, nlh)] (30)

Iul memfel

lﬂ(l+exp(0,+2x,py ttx,x.p,_y+ A XX Py Ihaxp(;r] tr,&v x,AvD

I=] mmiel

z':x.(e. +o )+ YO +§: i("nfmlh)]

tal m=l

2 1 i i1
n[l+exp(e +2 ,ph+§ EZ‘:(' P+t X1 X Py ,)Iuem(nﬁgr,s,ﬁgx,kﬁ]]

= 31
Zx (9 +a, r) uw "’+z Z(x,tmkh) 1)

=1 m=1+1

g”n(uaq{e +ix,pli Z..Z;x'x"pw o X)X Py ){l+exp(ni+§r,85+§:.(,xﬁ))

ZP[x“’lz,,R“’ B.p".a®y,.89,20]=1. , (32)

(x®)
EIX"|Z,,R®,B,,p",a",7,,8",4"] = |
EIX|Z,, R, 0,1 = (i, tyes ) ' (33)

Let X;® beat-1 vector of responses without the jth response; and X.;® be a t-2
vector of responses without the ith and jth responses, i,j=1,...,t. Then

n, = Z PlX, =1,X"IR®,Z,,0Q,| for j=1,.t (34)
(x50
where the summation is over all possible values of the vector X _ ,(').
Oy ... Oy

Cov[X“|Z,,R",Q,]= (35)

' Oy = Oy
where
oy =E[X, X,|Z RV, Q]-p.n;, Lj=1..t (36)

and
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EIX. X2, R".0Q]= ¥ P, =1 X, =Xz, ,R".,] (37)
(x~ii )

again, the summation is over all possible values of the vector X_y(').

Assuming p® = 0 and ignorability, i.e. @ =0, y,= 0, 8V = 0, A" = 0 then

P[x(l) lZl‘ R(’)’B“p(') = o’a(') - 0,7,,8(') =0, )‘(') = 0] -

exp{‘ix}ﬁj} . i .
== P[Xi =x; [2()), ﬂ(l)] 9
[T+ewle)

since 6; = BGYZ(G), j=1, ..., t

Assuming CRD,

PIX?|Z,, RV B,,p",a” =0,y,,69 =0,0" =0] =

I1 Plx, = xj'X,,...,Xj_l,Z,,R(",B,,p(')] (39)

j=l
Now for fixed T, substitute the derived marginal and joint distributions of the repeated

responses given the covarates and the missing data mechanism to equation (7) to obtain the
prevalence rate of the disease of interest or E(Y[X, Z, R).

3. MARKOV CHAIN MONTE CARLO SAMPLING
To estimate the parameters in the model presented in the previous section, Markov
chain Monte Carlo(MCMC) methods are proposed. For the general procedures of

implementing MCMC methods, refer to Gilks et al., (1996). In the simple case of a
univariate response,.the procedure is illustrated below.

Here t = 1, so we may write X; =X, R =R, Z(1)=Z, (1) =B, o4 =, y(1) =Yy, 1 =
q

From (4), X|Z, p~3a{:°’;’;i:i:—]zj}.

Now, assuming that | b, Z ~ Ny(b, Z), b~ Ny(0, I), Z~ Inv Wishart (v, S!') where v
and S are known and S is symmetric, positive definite, the posterior distribution is

o[plx,Z,b,2] = p[X|Z,8] o [Blb, £] pt61 p2) (40)

Thus, we have,
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€ [Xﬂ‘Z] ~q/ 2172 ) A _ar2 : )
e o UM M S DR R & p{ib}

-1
q 1—;
o 2va/2 pala-tye v+l-j
[ =

ex %(ﬁ—.ls'll‘"(ﬂ—bﬁxb'z ‘
* p{» [1+exp(p' Z)] } “h

Since the observations are independent,

exp{—%(n—b)'r'(s—b%i x,u'z,}

i=1

H [1+exp(p'2,)

{v+q+1)/2 —ltr(S}: ')

| e’

v/2

p[B|X,Z,b, ] e (42)

The expression in (42) may thus be written as g(8).

Consider the case where q = 3, ie. B=(f,.5,.8,). Since the probability function

g(B) in (42) is not of closed form, find an envelope function h(8) > h(B)2g(B)V B €
RY, and sampling from h(B) is possible. Consider h(.) to be Normal(., .), i.e.

Bo b, O Opn O
B=|B, |~ Nib=|b, |E=|0y oy o0y
B, b, Oy Oy Op

where X is symmetric and positive definite, hence =™ exists and is also symmetric.

Let
o® g g% q
2'=16" o" o%|andZ=|Z|
a® o &% Z,

Now by assumption

()(2Vﬂzr”a%—ﬂ bhﬁpaﬂ+2mzx}

e o o e

.QJUZyL+§an}[Z&LP

Define
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h(B;|B..;) = P?L(B(QE

where B._; = vector of B excluding the jth component.

Applying Metropolis-Hastings algorithm assuming that only n, responses were
observed out of n, n; < n, the following iterations are performed:

a) Given Xmis = (Xni+1, ..., Xn), generate B*= (B1*, Bo*, ..., Bq*) as follows:

Use BMu; based on P[X|Z, B] with observed responses only, as the initial value

BO= (B, B, BV ie.

| ' exp{[}'zn: xiZ,}
PIXIZ, B] - H[szm 'Zi.}}]‘ 2 5ty

=1

m

H[] + exP{ﬂ'Zi }]

=

exp{ﬂ'i x,Z, - i ln[l+ exp{Z,. 'B}]}
i=l i=l
NX|Z,

Then equating ﬁl__lf_] to 0, we obtain

op

n '—n [ exp _vﬁ
$x2:-32 (—%{L;lp p]

51

Use Newton-Raphson iterative procedure to approximate B = ﬂi(o) = (ﬁo(o),ﬁl(o),ﬁz(o))

al] Now sample 8, from

(0) n {0}
Bl ©, 3, = BB 8,")

[n(po.5,".5," k8,

Sample U from U(O, 1).

S(Bo |B|(O):B2(0))1(po(0) IBI(O)’BZ(O))
’ g(ﬁo(0)|B|(0)aB2(0))1(Bo IBI(O)’BZ(O))

accept Bo'”, else Bo'? = .

If U<min|l

Consider the conditional distribution
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h(ﬂ05Bl:B2) -
[(B,.8,.8,)dB,

el
N (e ) Y

It can be shown that

h(B, 8,8, )=

Bol B1.B2 ~ .
frgetpon ot o g4

Let the acceptance/rejection criterion be denoted by

B, B8, 88,7

gl .8, hlp, 8.8,
g@o,ﬁlm,ﬁz(‘”) (B“” © (o))
fg(f’o' © Bz‘°’)dBo Ih(ﬁ © (o) Bz“”)dﬂo“’)
g(B © (0) Bz(o)) h(ﬁOaBl(O))BZ(O)) )

.[g ©) (o) Bz“”)iﬂom Ih(ﬁo,ﬂ,"”,ﬁz("’)dﬁ

It can be shown that

F= . [l + exp(ﬁo(O) + Bn(o)zn + Bz(o)ziz)} .
1+ CXP(BO + Bx(O)Zn + Bz(O)Ziz)

(43)

This implies that the sampling acceptance/rejection criterion does not depend on the
response variable.

1+ exp(ﬁ ©4pz, + ﬁz(o)z )] otherwise B
1+ CXP(B + Bl(O)Zn + Bz(O)ZlZ) .

Then, accept Bo" if U < mml:l,n[

i=l
=B 0(0)‘

a2] Next, sample p;" from

(l) (0)
h(BilB®, B.¥) = 8.8.”)

| h(ﬂo“’,al,az‘”)dﬁl '

Again, it can be shiown that
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Bi | BoB2~

isl

{{b +2x 22“0,1 ,,[ (b +Zx Zz c,,)] o [B (b,+§:xi§zﬁo,.,}]],—'ﬁ

Sample U from U(0, 1).

It USmi“[ o, "0, 16, IBO“’,BQ“’)}

1,
B, lB.".8.” hip. [8.".5.)

accept B, else B, = Bl(d).
g3, 8.8, 0" 8,".8.°)
elp, g, .5, g, I8,".8,")

Similar to (43)

o1+ exp(Bo(') + [3,(0)2il + Bz(o)Ziz) '
1+ eXP(Bo(‘) +BZ, + Bzmziz)

Hence accept ﬂ,(') if

1+explg,” +8,Z, +8,"2Z,,
USH{“:"%(I) 7 o )) stow" =g
xpBo  +BiZy+B; Zi, :

a3] Next, sample B, from

(l) (l)
h(BZIBO(]), Bl(l)) = J'hl(}s (l) Bﬁﬁﬁ

i=l

As in the previous cases, it can be shown that

B2 | Bo,B1 ~

{[b DROEER n[ (b vEx zz,c,o]] ___[ [b o ZZ.o..]]J : }

Sample U from U(0, 1).

g(B ‘°’|Bo"’,ﬂl‘")1(;s |Bo‘",ﬁ”)

accept B, else B2V = B,
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Again, similar to (43)

g(ﬂ: 0('),ﬁ(')y‘(ﬁ2(0) lﬂo(l)’ﬂ‘(fi) _ n 1+exP(ﬂo(‘)‘+ ﬂl(')zﬂ +ﬂ2(0)2i2)
I+exp(ﬂo(” +ﬂ,(‘)Zn + 8, Z,.Z)

28,167 5Wp, 180 6T)

Hence accept B, if

U< - l+exp([3o(l)+Bl(l)Z“+B2(O)Zi2) <1
l"‘exP(po(l) +Bl(l)Zil +B, Ziz)

i=1
otherwise set B,V = B,
Continuing in this fashion, we arrive at a Markov Chain Monte Carlo sample of {8

whose estimated posterior mean we denote as ™) = (ﬂo(m'), B\™. B, (m'))-

b) Now given ™), generate X nis = (Xa1+1, .., X2)’ using Gibbs sampling from

("'1)'
PCX| p™), Z) = Ber{=PIP ( Z |
1+explp'™"Z

Assuming {x,,i =n+1Ln+ 2,...,n} are independent and identically distributed, we
sample x; from

(ml) {my) {m)
P(X| B(M), 2)= Cxp{xi(ﬁo ( )+Bl %il +B, ZiZ)} for i = n, +1n, +2...n.
1+ exP(Bo " Bn(m‘ Z, +B2m‘Ziz)

Starting with the new values of xis = (Xni41, ..., Xa)’ , iterate (a) and (b) until B* and
X*nis converge, say to B,,, and X is iy » TESpECtively.

Now from (6)

expyax +ry'Z
P[R = r|X =I,Z,a’Y]= l+ex§){rax+ﬂ';}

Let
(@ 1)[e.Z, ~Ngn(e, Zy)

¢~ Nq+l(09 l)
2, ~ Inv Wishart (w, W)

where w and W are known and W is sym, positive definite:

Similar Metropolis-Hastings procedure as above is applied to obtaih estimates of
: (a,y'). Iterative procedures are continuously applied to the models derived in the
previous section.
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4. SUMMARY AND DISCUSSIONS

This paper presents a scheme for modeling repeated binary responses with a nonignorable
missing data mechanism. The models used a simple relationship between dropout, responses
and their past values integrating covariate information. In the univariate case, the conditional
distribution of the response given the covariates and missingness showed a perturbed Bemoulli
distribution; and its conditional expectation and vanance follow the form of the Bemoulli
distribution.  For the bivanate case, the fonrm of the conditional distnbution of the responses
given covariates, missing data mechanism and their past values has yet to be compared with the
standard probability distributions. When ignorability was assumed though, the joint bivanate
model can be expressed as the product of the marginals given previous response. The same
result extended to the case of t repeated binary measures.

In the case of case of univariate response, a sequence of Metropolis-Hastings algorithm and
Gibbs sampler is illustrated to estimate the parameters of the models. These MCMC methods
are sequentially combined to obtain estimates of the parameters and the mussing data. It is
observed from the models that the number of parameters increases considerably as the number
of repeated observations increases.
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